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Abstract. Kinetic helicity of vortex in Bose-Einstein condensates is studied and classified by Hopf index,
linking number in geometry. A mechanism of generation and annihilation of vortex line is given by method
of phase singularity theory. The dynamic behavior of vortex at the critical points is discussed detailly, and
three kinds of length approximation relations at the neighborhood of singularity point are given.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices and topological excitations – 67.40.Vs Vortices and turbulence – 03.65.Vf Phases: geometric;
dynamic or topological

1 Introduction

Since Lord Kelvin’s knotted vortex atom hypothesis [1],
knotted vortices have been studied widely in different
physical situations such as hydro-dynamics [2,3], field the-
ory [4], nonlinear excited media [5] and optics [6]. Dirac
recognized important role of phase singularity of quan-
tum mechanical wave function in his work on monopoles
[7], and Madelung gave a vivid interpretation of the lines
where the phase is singular [8] on the hydrodynamic for-
mulation of the Schrödinger theory. These are vortex lines
in the flow of the probability fluid. In this paper, the knot-
ted vortex lines of Bose-Einstein condensation are studied
by method of phase singularity theory.

The dramatic achievement of Bose-Einstein conden-
sation at ultralow temperatures in experiment [9,10] on
vapors of rubidium and sodium has stimulated an intense
interest in the production of vortices and theoretical in-
vestigations of their structure, energy, dynamics and sta-
bility [11,12]. The condensates of alkali vapours are pure
and dilute, so that the Gross–Pitaevskii (GP) model which
represents the so-called mean-field limit of quantum field
theories gives a precise description of the atomic conden-
sates and their dynamics at low temperatures.

We known that a single component BEC can be de-
scribed by a single particle wave function of bosons of mass
m. Wave function obeys Gross-Pitaevskii equation [13,14]

i�
∂ψ

∂t
= − �

2

2m
∇2ψ +W0ψ ‖ψ‖2 . (1)

Here W0 characterizes the potential between Bosons, as-
sumed positive in our treatment.
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In an external harmonic oscillator trap potential, the
energy function can be written as

FGP =
∫
d2r

[
�

2

2m
‖∇ψ‖2 +

1
2
�2r2 ‖ψ‖2 +

W0

2
‖ψ‖4

]
.

(2)
Here 1

2�
2r2 is the confining potential. From (2), one can

obtain Gross-Pitaevskii equation

i�
∂ψ

∂t
= − �

2

2m
∇2ψ +W0ψ ‖ψ‖2 +

1
2
�2rψ. (3)

In this paper, we try to give a uniform description of vor-
tex lines in BEC and trapped BEC.

The velocity field V is defined in terms of the proba-
bility current

V =
i�

2mψ∗ψ
(ψ∇ψ∗ − ψ∗∇ψ). (4)

The wave function is usually written as

ψ = ‖ψ‖ eiϕ, (5)

ϕ is phase factor. Then velocity is just gradient of phase
factor, i.e.

V =
�

m
∇ϕ. (6)

It leads to a trivial curl-free result

∇× V = 0. (7)

Therefore, the flow is strictly irrotational in the bulk.
Feynmann found [15] that this statement have to be mod-
ified. He point out that curl of velocity can be non-zero at
a singular line, the core of quantum vortex line. So vortic-
ity may live only on the lines of singularities of the phase.
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Based on the phase singularity theory, we not only obtain
the correct result of curl of velocity field, but also get the
precise expression of kinetic helicity of vortex lines.

This paper is organized as follows. In the second sec-
tion, we have classified the topological structure of vortex
lines of GP model in terms of Hopf index and Brouwer
degree; In the third section, we have studied the topolog-
ical structure of knotted vortex lines, given the relation
of helicity with linking number in geometry. In the fourth
section, we have given a mechanism of generation and an-
nihilation of vortex lines.

2 Classification of vortex lines

We denote the condensate wave function as

ψ = ψ1 + iψ2. (8)

The velocity (4) is written as

V = gεab ψ
a

‖ψ‖∇
ψb

‖ψ‖ , a, b = 1, 2. (9)

Here εab is Levi-Civita antisymmetric tensor, and g is �/m.
The vorticity of the velocity field is Ω = ∇ × V, which
can be written in terms of the wave function

Ωi =
1
2
gεijkεab∂j

ψa

‖ψ‖∂k
ψb

‖ψ‖ . (10)

We use the relation

∂b
ψa

‖ψ‖ =
∂bψ

a

‖ψ‖ − ψaψb

‖ψ‖3 ; ∂a∂a ln ‖ψ‖ = 2πδ2(ψ),

(11)
and obtain the vorticity

Ωi = 2πgδ2(ψ)Di

(
ψ

x

)
. (12)

Here [16,17]

Di

(
ψ

x

)
=

1
2
εijkεab∂jψ

a∂kψ
b,

i, j, k = 1, 2, 3; a, b = 1, 2. (13)

Equation (13) tells us that the vorticity field

Ωi = 0 only if ψ �= 0,
Ωi �= 0 only if ψ = 0. (14)

Hence, ∫
Mk

Ωidσi = 2πgβkηk. (15)

Here Mk is the kth planar element transverse to vortex
line Lk with local surface σi, and ηk = sgn D(ψ/u) = ±1.
It is Brouwer degree of ψ mapping, which characterizes
the direction of vortex line. The positive integer number
βk is the Hopf index, which means that when x covers

the zero points region once, the wave function covers the
corresponding region in wave function space βk times. In
Moffatt’s paper, βk is also called winding number traced
from Gauss. It is obvious that the vortex line can be clas-
sified by Brouwer degree and Hopf index, which is also
obtained in [18].

In fact, a tensor current can be defined in quantum
mechanics, i.e.,

T µν =
1
2
gεµνλςεab∂λn

a∂ςn
b,

µ, ν, λ, ς = 0, 1, 2, 3; a, b = 1, 2. (16)

Here 1, 2, 3 denote space coordinate, and 0 denotes time
coordinate. The spatial component of tensor current T µν

is

T 0i = Ωi =
1
2
gεijkεab∂jn

a∂kn
b, i, j, k = 1, 2, 3. (17)

It is just vorticity field, i.e., equation (10).
In this section, the topological structure of vortex line

is studied, topological structure of vortex lines of Bose-
Einstein condensation in terms of Hopf index and Brouwer
degree.

3 Kinetic helicity of vortex

The kinetic helicity Γ of vortex is Γ =
∫

V · Ωd3x. From
equation (15), we can obtain

Γ = 2πg
N∑

k=1

βkηk

∫
Lk

Vidx
i. (18)

When these vortex line are closed curves, i.e. a family of
knots ξk(k = 1, 2, ...N), equation (18) becomes

Γ = 2πg
N∑

k=1

βkηk

∮
ζk

Vidx
i. (19)

Linking numbers are the simplest topological relation be-
tween two closed curves; this number is zero for two un-
linked curves. In order to discuss the linking numbers of
the knotted vortex lines, we define Gauss mapping:

ñ: S1 × S1 → S2, (20)

where ñ is a unit vector

ñ(x,y) =
xk − xl

‖xk − xl‖ , (21)

where xl and xk are two points respectively on the knotted
vortex lines ξl and ξk. When xl and xk are the same point
on the same vortex line ζ, ñ is just the unit tangent vector.
When xl and xk cover the corresponding vortex lines ξj
and ξk, ñ becomes the section of sphere bundle S2. As in
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the above section, we can define two two-dimensional unit
vectors ẽ = ẽ(xl,xk). ẽ, ñ are normal to each other, i.e.,

ẽ1 · ẽ2 = ẽ2 · ñ = ẽ2 · ñ = 0,
ẽ1 · ẽ1 = ẽ2 · ẽ2 = ñ · ñ = 1. (22)

In fact, the velocity V can be expressed as

Vi=
1
2
gεabea∂ie

b, a, b = 1, 2. (23)

Substituting it into equation (19), one can obtain new
expression of kinetic helicity

Γ = πg2
N∑

k=1

βkηk

∮
ξk

εabea(xl,xk)∂ie
b(xl,xk)dxi. (24)

It can be also written as

Γ = πg2
N∑

k,l=1

βkηk

∮
ξk

∮
ξl

εab∂ie
a(xl,xk)

× ∂je
b(xl,xk)dxi ∧ dxj . (25)

There are three cases: (1) ξk, ξl are different vortex lines,
xl,xk are different points; (2) ξk, ξl are the same vortex
line, xl,xk are different points; (3). ξk, ξl are the same
vortex line, xl,xk are same point. Thus equation (25) can
be written as

Γ = 4π2g2

{
1
4π

N∑
k=1(xl �=xk)

βkηk

∮
ξk

∮
ξk

εab∂ie
a(xl,xk)

×∂je
b(xl,xk)dxi ∧ dxj

+
1
4π

N∑
k=1(xl=xk)

βkηk

∮
ξk

εab∂ie
a(xl,xk)

×∂je
b(xl,xk)dxi ∧ dxj

+
1
4π

N∑
k,l=1(k �=l)

βkηk

∮
ξk

∮
ξl

εab∂ie
a(xl,xk)

×∂je
b(xl,xk)dxi ∧ dxj

}
. (26)

The first term is just the writhing number [19] wr(ξk) of
vortex line ξk. The second term is the twisting number
Tw(ξk) of vortex line ξk. From White’s formula [20], the
self-linking number S(ξk) of the vortex line ξk is:

S(ξk) = wr(ξk) + Tw(ξk). (27)

The third term is Gauss linking number L of vortex lines
ξk and ξl i.e.,

L(ξk, ξl) =
1
4π

N∑
l=1

βkηk

∮
ξk

∮
ξl

εab∂ie
a(xl,xk)

× ∂je
b(xl,xk)dxi ∧ dxj , k �= l. (28)

We then obtain the important result

Γ = 4π2g2

⎡
⎣ N∑

k=1

βkηkS(ξk) +
N∑

k,l=1

βkηkL(ξk, ξl)

⎤
⎦ , (29)

This result is correct not only in the quantum case [21]
but also classical fluid [2]. If there are N filaments with
strength χk (k = 1, 2, · · ·N) whose self knottedness de-
gree, i.e. βk = 1 in classical fluid, the kinetic helicity equals
4π2

∑N
k,l=1 ηkL(ξk, ξl) =

∑N
k,l=1 χkχlηkηlαkl (αkl = 1 if

two vortex lines ξk, ξl are linked; αkl = 0, if ξk, ξl are
not singly linked). In the next two sections we will dis-
cuss dynamic behavior of vortex lines of of Bose-Einstein
condensation which keep the kinetic helicity invariant.

4 Branching of vortex lines

In our work, the evolution of vortex line can be discussed
from equation (12). For simplicity, we fix the x3 = z coor-
dinate and take the XOY plane as the cross-section. The
intersection line between vortex line evolution surface and
the cross-section is just the motion curve of vortex line.
In this two dimensional case, i.e., ν = 3 in equation (16),
we obtain

Ω3 = T 03 = 2πgδ2(ψ)D
(
ψ

x

)
, (30)

T 13 = 2πgδ2(ψ)D1

(
ψ

x

)
, (31)

T 23 = 2πgδ2(ψ)D2

(
ψ

x

)
. (32)

Here

D

(
ψ

x

)
= εab∂1ψ

a∂2ψ
b,

D1

(
ψ

x

)
= εab∂2ψ

a∂tψ
b, (33)

D2

(
ψ

x

)
= εab∂tψ

a∂1ψ
b.

Please note that D1(ψ/x) or D2(ψ/x) in two dimensional
case is not the same as one in three dimensional case.
Ω3 is called vortex density, and T 13, T 23 is called vortex
density current in Mazenko’s paper [17]. It is obvious that
the continuity equation is satisfied, i.e.,

∂tΩ3 + ∂iT
i3 = 0, i = 1, 2. (34)

The velocity of the intersection point of vortex line and
the cross-section is given

dxi

dt
=
Di(ψ/x)
D(ψ/x)

, i = 1, 2. (35)

In fact, one can find easily that

T i3 = Ω3 dx
i

dt
, i = 1, 2. (36)
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From equation (35), we know that when D(ψ/x) = 0
at very point (t∗,x∗), the velocity dx1/dt or dx2/dt is
not unique in the neighborhood of (t∗, x∗). At the sin-
gularity point, the normal velocity can not be defined,
which is also pointed out by other physicists [6,17]. Be-
cause of the conservation of vortex circulation, it should
branch or split [22,23]. In reference [18], bifurcation of
vortex line is also discussed, but their continuity equation
is not correct and time derivative not considered. Tak-
ing Taylor expansion of the solution of wave function at
the neighborhood of singularity point, one can obtain the
direction of zero point on the cross-section at the sin-
gularity point. Let us do that now! If we assume that
D2(ψ/x)(t∗,x∗) �= 0, then there are usually two kinds of
singularity points: points where D1(ψ/x) |(t∗,x∗) �= 0 and
points where D1(ψ/x)(t∗,x∗) = 0.

When D1(ψ/x) |(t∗,x∗) �= 0, we obtain from equa-
tion (35)

dx1

dt
=
D1(ψ/x)
D(ψ/x)

|(t∗,x∗) = ∞, (37)

i.e.
dt

dx1
|(t∗,x∗) = 0. (38)

Taking Taylor expansion of t = t(x1, t) at this singularity
point of vortex line, one can obtain

t− t∗ =
1
2

d2t

(dx1)2
|(t∗,x∗)(x1 − x1∗)2 (39)

which is a parabola in x1−t plane. From equation (39) one
can obtain two solutions, which give the branch solutions
of vortex line at this critical points. If d2t/(dx1)2|(t∗,x∗) >
0, we have the branch solutions for t > t∗, otherwise, we
have the branch solutions for t < t∗. The former is re-
lated to the origin of vortex line at the singularity points.
From the continuity equation, we know that the topologi-
cal number of vortex line is identically conserved. It means
that the total topological number of the final vortex lines
equals to that of the initial vortex lines. The total num-
bers of these two generated vortex lines must be zero at
the critical point, i.e. the two generated vortex lines have
to be opposite, i.e.

β1η1 + β2η2 = 0. (40)

It is a process of generation or annihilation of vortex
lines [24–26]. At the neighborhood of this singularity
point, we denote length l = ∆x. From equation (39), one
can obtain the approximation relation

l ∝ ‖t− t∗‖ 1
2 . (41)

The growth velocity γ = l/∆t or annihilation velocity of
vortex lines

γ ∝ (t− t∗)
−1
2 . (42)

It is obvious that Ek ∝ (t− t∗)−1 [27]. This result agrees
with the numerical data [28,29].

Now let us study the situation of vortex line at its
singularity point where D1(ψ/x)|(t∗,x∗) = 0. The Taylor

expansion of the solution of ψ1and ψ2 in the neighbor-
hood of this singularity point can generally be denoted as
A(x1 −x1∗)2 +2B(x1 −x1∗)(t− t∗)+C(t− t∗)2 + · · · = 0,
where A, B and C are three constants. Then from the
Taylor expansion, we can obtain

A

(
dx1

dt

)2

+ 2B
dx1

dt
+ C = 0. (43)

There are two kinds of length scales:
Case 1, A �= 0, (B2−AC) � 0. At the neighborhood of

the singularity point, we denote scale length ∆x = l. Then
from the Taylor expansion, we can obtain the asymptotic
relation

l ∝ (t− t∗). (44)

Case 2, A = C = 0. We obtain

dt

dx1

∣∣∣∣(t∗,x∗) = 0, or
dx1

dt

∣∣∣∣
(t∗,x∗)

= 0. (45)

From equation (45), one can obtain

l = const, γ = 0. (46)

It is obvious that vortex lines are relatively rest when l =
const.

5 Conclusion

We denote total topological number Q of vortex lines con-
figuration

Q =
N∑

k=1

βkηkS(ξk) +
N∑

k,l=1

βkηkL(ξk, ξl), (47)

which is a Hopf invariant, and also called topological
charge by Faddeev. Then

Γ = 4π2Q. (48)

Since the kinetic helicity Γ is invariant in our case, then
the sum of the the final vortex topological number must be
equal to that of the original vortex lines at the singularity
point, i.e.

Q = cons tan t. (49)

This relation and the singularity condition determine the
dynamic behavior of the vortex lines. The situation be-
comes complicated for the the entangleness of vortex lines.

The branching condition of vortex line is determined
by wave function ψ = 0, and

D

(
ψ

x

)
= 0, (50)

or

D1

(
ψ

x

)
= 0. (51)
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We know that wave function satisfies GP equation, i.e.,
equation (1) in BEC, or equation (3) in trapped BEC.
The branching of vortex in BEC is different with that in
trapped BEC naturally because of the confining potential.

In the present work, kinetic helicity of vortex lines of
GP model are classified by Hopf index, Brouwer degree
and linking number in geometry. A mechanism of genera-
tion and annihilation of vortex line is given. The evolution
equation of vortex line has been given and its dynamic be-
havior at the singularity points is discussed in detail. We
result that there are only three kind of length approxima-
tion relation at the neighborhood of singularity point in
this model, i.e. l ∝ (t − t∗)1/2, l ∝ t − t∗, l = const. The
dynamic behavior becomes complicated because of the the
entangleness of vortex lines. The entanglement of vortex
lines may be verified by experiment in future.

This research is supported by Foundation of Aviation of China
and Genius Startup Foundation of Huazhong University.
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